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Abstract

We provide a detailed description of a model and its computational algorithm for the secondary
electron emission process. The model is based on a broad phenomenological fit to data for the secondary
emission yield (SEY) and the emitted-energy spectrum. We provide two sets of values for the parameters
by fitting our model to two particular data sets, one for copper and the other one for stainless steel. We
also present details of the electron-cloud simulation code POSINST that are relevant to the secondary
emission process. This note expands on our previously published article [1].

1 Introduction.

The existence of the electron cloud effect (ECE) [2, 3], whose first and most prominent manifestation is
beam-induced multipacting [4, 5], has been firmly established experimentally at several storage rings [6–9].
Generally speaking, the ECE is a consequence of the strong coupling between a charged-particle beam and
the vacuum chamber that contains it via a cloud of electrons in the chamber. The ECE is detrimental to the
performance of modern storage rings, which typically make use of intense beams, closely spaced bunches,
and/or vacuum chambers of small transverse dimensions.

For the past six years or so we have been studying the ECE by means of multiparticle simulations with our
code POSINST that includes a detailed probabilistic model of the secondary emission process [10, 11], which
is one of the critical contributors to the ECE. The input ingredients of the model are the secondary emission
yield (SEY) and the emitted-energy spectrum of the secondary electrons. Besides agreeing reasonably well
with various aspects of the data, the main virtue of the model is that it is mathematically self consistent.
By this we mean that the model is constructed so that: (1) when averaging over many secondary emission
events, the reconstructed SEY and emission spectrum are guaranteed to agree with the corresponding input
quantities; (2) the integral of the energy spectrum is guaranteed to equal the SEY; (3) the energy of any given
emitted electron is guaranteed not to exceed the primary energy; and (4) the aggregate energy of all emitted
electrons in any given event is also guaranteed not to exceed the primary energy. Recent work has shown, in
some cases, an unexpectedly strong sensitivity of the overall simulation results on low-energy details of the
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SEY and the energy spectrum [12, 13] that remains to be fully characterized and understood. Motivated by
this, we have paid particular attention to the above-mentioned low-energy details in our model. Therefore,
although the model involves a fair number of adjustable parameters, and some of them cannot be uniquely
pinned down by presently available data, its mathematical consistency and its good overall agreement with
secondary emission data ensure that the above-mentioned sensitivity cannot be attributed to mathematical
artifacts of the model or to inadequate representation of the data.

The main purpose of this article is the description of the model and its computer implementation in
POSINST, and to provide further details than in Ref. 1. We also provide sample fits to existing data on
the SEY and emitted-energy spectrum. With regards to this latter quantity, we provide here a correction
to a previously used [10, Eq. 4.5] expression that was conceptually incorrect. Although the emitted-energy
spectrum is not computed nor used directly in the ECE simulation code, it is used to extract parameters
from the data which are then fed as input to the simulation.

The Monte Carlo technique has been used before for the description of the secondary emission process. In
a more traditional approach, the main ingredient is a microscopic model for the secondary-emission material,
typically specified by the electron and ion distributions, and by the elastic and inelastic cross sections for the
collision of the primary and secondary electrons with the ions and with the other electrons in the material [14].
In this approach, one may infer microscopic properties of the material by comparing measured data for δ and
dδ/dE with the corresponding quantities computed from the model. On the other hand, in the approach we
present in this article, as mentioned above, the main ingredient is the measured data for δ and dδ/dE, and
the main result is the set of joint probability functions for the emission of secondary electrons. Thus our
model is essentially phenomenological, and does not afford a direct insight into the properties of the material
or the theory of secondary emission. In particular, some of our fitting formulas are of different form from
those based on the theory of metals. However, although our formula for the true-secondary yield (Sec. 3.4.1)
is different from the conventional one [15], it does incorporate the well-established range-energy relation [16].

In Sec. 2 we describe the secondary emission process by first briefly recapitulating the basic phenomenol-
ogy and then providing the probabilistic description of the emission process in terms of the “most differential
probabilities” Pn, which constitute the basic building blocks for our model. This probabilistic description
is quite general, and we believe its validity to be rooted in general principles of the quantum theory for
the secondary emission process. In Sec. 2.3 we define a specific phenomenological model for the Pn’s by
following the principle of maximum simplicity consistent with the data. In particular, we strictly enforce the
condition that the energy of any secondary electron may not exceed that of the incident (primary) electron,
a fact that is clearly exhibited by secondary energy spectrum data. In addition, we also impose the same
restriction on the aggregate secondary energy. Although we are not aware of experimental data supporting
this latter restriction, we believe it to be true on account of general physical principles. In Sec. 3 we con-
tinue the definition of our model by providing detailed parametrizations for each of the three components
of the SEY based on various reviews of the theory and phenomenology of the subject [15, 17–19]. In Sec. 4
we carry out the analytic calculation of the energy spectrum within our model. In Sec. 5 we provide the
algorithmic description of the probabilisitic model just constructed, as implemented in our ECE simulation
code POSINST. In Sec. 6 we use the energy spectrum, along with the three components of the SEY, to fit
the data and extract the various parameters of the model. In Sec. 7 we summarize our conclusions. The
various Appendices provide: A: mathematical details of the analytic calculation of the energy spectrum;
B: the “jet” energy spectrum; C: an alternative model for the Pn’s that offers a simplified calculation of
the spectrum that is approximately valid for sufficiently high primary energy; D: Monte Carlo generation of
secondary electrons; E Monte Carlo computation the energy spectrum; F: alternative parametrizations of
the SEY.

2 Model of secondary electron emission.

2.1 Basic phenomenology.

The two main quantities used in the experimental study of the secondary emission process are the SEY δ and
the emitted-energy spectrum dδ/dE [18, 19]. To define these, we consider a steady mono-energetic electron
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beam impinging on a surface. The SEY is defined by

δ =
Is
I0

(2.1)

where I0 is the incident electron beam current and Is is the secondary current, i.e., the electron current
emitted from the surface. The yield is a function of the kinetic energy E0 of the incident electron beam, its
incident angle θ0, and the type of surface material and its state of conditioning. For applications to the ECE,
we are primarily interested in incident energies E0 below a few keV’s, although the framework presented
here is formally valid for all energies.

By applying a retarding voltage V in front of the secondary current detector one can select those electrons
that are emitted with individual energies Ek ≥ E = eV . The cumulative emitted-energy spectrum S(E0, E)
is then defined to be

S(E0, E) =
Is(E)

I0
(2.2)

where Is(E) is the secondary current that overcomes the voltage barrier (for notational conciseness we
suppress a dependence of S on θ0). The emitted-energy spectrum dδ/dE is defined to be

dδ

dE
= −∂S(E0, E)

∂E
(2.3)

where the − sign ensures that dδ/dE > 0 (the emitted-energy spectrum dδ/dE can also be measured directly
by means of a magnetostatic or electrostatic energy analyzer [21, 22]). Noting that Is(0) is what is simply
called Is in Eq. (2.1) we obtain S(E0, 0) = δ(E0). Therefore, using the fact that Is(E) = 0 for E > E0, we
obtain ∞∫

0

dE
dδ

dE
= δ(E0). (2.4)

For more detailed descriptions of the secondary emission process one may require additional variables
or measured quantities. For example, if the surface has an anisotropy defined by a preferred direction such
as a crystal axis or grooves arising from the fabrication process [23], one may need to specify an azimuthal
incident angle φ0 in addition to the polar angle θ0. If the secondary electron detector is capable of detecting
the emitted-angle dependence of the secondary electrons, an appropriate emission-angle dependence should
be incorporated into S(E0, E) [18, Secs. 7.1–7.2]. If the incident electron beam is polarized, one may
need to define the yield and emitted-energy spectrum separately for each spin polarization state. In this
article, however, we are not concerned with such additional details: we consider only homogeneous materials,
unpolarized incident electrons, and undetected (hence averaged over) polarizations of the emitted electrons.
In addition, we wholly neglect the contribution of Auger electrons [24] to dδ/dE, as well as the “characteristic
energy loss” mechanism [19, Sec. 4.1.3], as these effects are expected to contribute negligibly to the electron-
cloud effect.

2.2 Probabilistic description.

We now provide a microscopic, i.e., event-by-event, description of the secondary emission process, where
an “event” is a single electron-surface collision. This process is quantum mechanical hence probabilistic in
nature; thus an electron with kinetic energy E0 striking a surface at an angle1 θ0 will yield n secondary
electrons with a probability Pn(E0, θ0), n = 1, · · · ,∞, as sketched in Fig. 1. The Pn’s obviously satisfy

∞∑

n=0

Pn = 1 , Pn ≥ 0 (2.5)

where P0 is the probability that the incident electron is absorbed without emission. In terms of the Pn’s,
the SEY defined in Sec. 2.1 is simply the average electron multiplicity in the collision,

1We adopt the convention that θ0 is measured relative to the normal to the surface at the point of impact.
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Figure 1: A single electron with energy E0 strikes a surface yielding n secondary electrons with energies
E1, E2, . . . , En.

δ = 〈n〉 =

∞∑

n=1

nPn . (2.6)

Although much is known experimentally about the energy spectrum and angular distribution of the
secondary electrons, the knowledge of δ, dδ/dE and the Pn’s is not enough for an event-by-event simulation
of the secondary emission process. Such a simulation requires the knowledge of the “most differential
probability”

Pn =
dPn

dE1dΩ1dE2dΩ2 · · · dEndΩn
(2.7)

for 1 ≤ n < ∞, i.e., the joint probability for the n electrons in the final state to be emitted with kinetic
energies E1, E2, . . . , En into the solid angles Ω1 = (θ1, φ1), Ω2 = (θ2, φ2), . . . ,Ωn = (θn, φn) when an
electron strikes the surface at a given energy E0 and angle θ0.

The phase-space probabilities Pn contain all the information relevant to the secondary emission process.
They correspond to the transition probabilities |Sfi|2, where Sfi is the quantum transition amplitude from
an initial state i to a final state f . In our case the initial state i represents the incident electron, characterized
by its energy E0 and angle θ0, while the final state f represents the n emitted electrons, and is characterized
by their energies and emission directions. The Pn’s are in principle calculable from the quantum theory of
the surface material, and in principle measurable. We are not aware, however, of any such calculations or
measurements, which must surely be very challenging. The construction of a phenomenological model for
the Pn’s is the central goal of this article. Although such a construction is not unique, we shall be guided
by the principle of maximum simplicity consistent with available data for δ and dδ/dE.

If we define the n-body volumes of kinetic energy and solid angle, respectively, as (dE)n ≡ dE1dE2 · · · dEn
and (dΩ)n ≡ dΩ1dΩ2 · · · dΩn, then Pn = dPn/(dE)n(dΩ)n. The probability Pn is obtained by integrating
Pn over the entire phase space of the secondary electrons,

Pn =

∫
(dE)n(dΩ)n Pn , n ≥ 1 , (2.8)

and the absorption probability is then given by

P0 = 1−
∞∑

n=1

Pn (2.9)

(again, we suppress a dependence of the Pn’s on E0 and θ0 for notational clarity).
The cumulative secondary energy spectrum S(E0, E) is then given by

S(E0, E) =

∞∑

n=1

∫
(dE)n(dΩ)n Pn

n∑

k=1

θ(Ek − E) (2.10)
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where the θ-functions ensure that only those electrons emitted with an energy ≥ E are counted, and that
the count is precisely equal to the number of such electrons. Finally, Eq. (2.3) yields2

dδ

dE
=

∞∑

n=1

∫
(dE)n(dΩ)n Pn

n∑

k=1

δ(Ek − E) . (2.11)

2.3 Model for Pn.
2.3.1 Emission angles.

For simplicity we assume that Pn factorizes in the form

Pn = An(Ω1, · · · ,Ωn)× dPn
(dE)n

(2.12)

where Ωk = (θk, φk) is the emission direction of the kth secondary electron, and dPn/(dE)n does not
depend on Ωk. This formula implies that the emission energy is uncorrelated with the emission angle.
Experimentally, it is known [18, Sec. 7.1] that the true secondary electrons have a ∼ cos θ distribution in
angle, which is fairly independent of the primary incident angle θ0 and incident energy E0. This is not quite
true of the elastically reflected and rediffused electrons (see below), which have a more complicated angular
distribution. Nevertheless, following the simplicity principle, we assume the same emission-angle distribution
for all electrons, regardless of the physical mechanism by which they were generated. Thus we assume

An(Ω1, · · · ,Ωn) =

(
α+ 1

2π

)n
cosα θ1 cosα θ2 · · · cosα θn (2.13)

where α is an adjustable parameter expected to be close to 1. This form for An also implies that the
emission angles are fully uncorrelated from each other (the azimuthal emission angle θk is defined relative to
the normal to the surface at the point where the primary electron strikes). The normalization is such that

∫
(dΩ)nAn(Ω1, · · · ,Ωn) = 1 (2.14)

so that the energy part of the distribution is given by

dPn
(dE)n

=

∫
(dΩ)n Pn . (2.15)

The above normalizations for An and Eq. (2.8) imply that dPn/(dE)n satisfies

∫
(dE)n

dPn
(dE)n

= Pn . (2.16)

2.3.2 Emission energies.

We now make the assumption that dPn/(dE)n is of the form

dPn
(dE)n

= θ(E0 −
n∑
k=1

Ek)
n∏
k=1

fn(Ek)θ(Ek)θ(E0 − Ek) (2.17)

where fn(Ek) is the energy distribution of the kth emitted electron in an event with a total number n of
secondary electrons. The θ-function in front ensures that the aggregate energy of the emitted electrons
does not exceed the primary electron energy. Physically, this constraint means that the secondary electrons
are emitted in an almost uncorrelated fashion: they “know” about each other just enough that they will
not extract energy from the surface material. The functions θ(E0 − Ek) ensure that the energy of any
given emitted electron does not exceed the primary electron energy either, a fact that is well supported by
experimental data on the emitted energy spectrum.

2The Dirac delta functions appearing in the sum over n in Eq. (2.11) should not be confused with the SEY.
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In App. C we consider, as a simplified alternative, a fully uncorrelated model defined by an expression for
dPn/(dE)n similar to (2.17) without the θ functions (Eq. (C.1)). This model has the advantage of simplicity
over (2.17), but if suffers from the deficiency that the energy of any given secondary electron has a nonzero
probability of exceeding E0, contrary to experimental results. Nevertheless, if the functions fn(E)’s vanish
at large E, the θ function in (2.17) may be effectively set to unity for large E0, hence the results obtained
from (2.17) must coincide with those from (C.1) in this limit.

Eq. (2.16) implies
E0∫

0

n∏

k=1

{dEkfn(Ek)} θ(E0 −
n∑
k=1

Ek) = Pn(E0) (2.18)

which we will later use to normalize the fn’s to the Pn’s. Note that Eq. (2.18) implies the sum rule

E0∫

0

dE fn(E)Pn−1(E0 − E) = Pn(E0) (2.19)

where the term P0 appearing in the integrand for the choice n = 1 must be interpreted not as the absorption
probability (2.9) but rather as θ(E0 − E).

3 The three main components of the SEY.

3.1 The basic assumption.

The conventional picture of secondary emission, which we base on various reviews of the subject [15, 17–19],
can be summarized as follows: when a steady current I0 of electrons impinges on a surface, a certain portion
Ie is reflected elastically while the rest penetrates into the material. Some of these electrons scatter from one
or more atoms inside the material and are reflected back out. These are the so-called “rediffused” electrons,
and we call the corresponding current Ir. The rest of the electrons interact in a more complicated way with
the material and yield the so-called “true secondary electrons,” whose current we call Its. The yields for
each type of electron are defined by δe = Ie/I0, δr = Ir/I0, and δts = Its/I0, so that the total SEY is

δ = (Ie + Ir + Its)/I0 (3.1a)

= δe + δr + δts (3.1b)

= P1 + 2P2 + 3P3 + · · · (3.1c)

where (3.1c) follows from (2.6). At the quantum level, of course, the distinction between the three types
of electrons is unphysical. Nevertheless, in practice there exists a conventional criterion [18, 19], which we
follow, that leads to this distinction, and hence to the separate measurements of δe, δr and δts. The criterion
is based on the three main regions, in secondary energy E, exhibited by dδ/dE; Fig. 2 shows the contributions
of the three components for the case of an incident electron beam of energy E0 = 300 eV striking a stainless
steel surface.

In order to assign the three components of δ to the Pn’s, we now make a simplifying assumption, namely:
the backscattered (elastic or rediffused) electrons are only produced in one-electron events (n = 1), while
the true secondary electrons are produced in events with any number of secondary electrons (n ≥ 1). This
assumption means that in any given event backscattered electrons are never accompanied by true secondaries,
and conversely, when two or more electrons are produced in any given event, they can only be true secondaries.
This assumption offers perhaps the simplest (but not the only) mathematically consistent characterization
of the secondary emission process. The basic picture is sketched in Fig. 3.

In terms of the Pn’s, this assumption implies

P1 = P1,e + P1,r + P1,ts (3.2a)

Pn = Pn,ts, n ≥ 2 (3.2b)
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Figure 2: A sample of the measured energy spectrum dδ/dE for an unconditioned sample of stainless steel
at E0 = 300 eV, normal incidence. The three components of the secondary yield are given by the values of
“area[E1, E2],” each of which represents the integrated spectrum between E1 and E2. Thus for this case,
δts = 1.17, δr = 0.75 and δe = 0.12, for a total SEY δ = 2.04. The upper energy cutoff for the true
secondaries is somewhat arbitrarily, but conventionally, chosen to be 50 eV. Data courtesy R. Kirby.

which implies an absorption probability

P0 = 1−
∞∑

n=1

Pn = 1− P1,e − P1,r −
∞∑

n=1

Pn,ts (3.3)

and also

δe = P1,e (3.4a)

δr = P1,r (3.4b)

δts =

∞∑

n=1

nPn,ts . (3.4c)

In terms of the fn’s, we have

f1 = f1,e + f1,r + f1,ts (3.5a)

fn = fn,ts, n ≥ 2 (3.5b)

where the functions f1,e, f1,r, fn,ts, P1,e, P1,r, and Pn,ts remain to be specified.
Although the assumption of mutual exclusion is not required by the data, it appears to be consistent

with the experimental data on the emitted energy spectrum for incident energies above ∼ 100 eV, as seen
in Fig. 2. An immediate consequence of the assumption, as implied by Eqs. 3.4, is that δe + δr must be
≤ 1. This inequality must be enforced by appropriate parameter choices because it is not guaranteed in our
model, although it appears to be readily satisfied by experimental data [20]. Another consequence of our
assumption is that δts must vanish in the extreme case δe + δr = 1. This fact also appears to be consistent
with experiment as E0 decreases below ∼ 50 eV, although there is an ambiguity in the interpretation of
the data at these relatively low energies. Should more detailed data on secondary emission invalidate the
mutual-exclusion assumption, Eqs. (3.2), (3.4) and (3.5) would have to be modified accordingly.
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I0
Ir

Ie

Its

Figure 3: Sketch of the currents that are used to define the different components of secondary emission. The
blob is meant to emphasize a nontrivial interaction yielding true secondary electrons. This sketch embodies
a mutual-exclusion property of the three types of emission processes, spelled out in the text.

Note that there is no safeguard in the above construction that prevents P1 from exceeding unity nor P0

from becoming negative. These conditions must also be enforced by appropriate parameter choices, but this
might be problematic in certain cases of practical interest. A construction of the Pn’s that does guarantee
P1 ≤ 1 and P0 ≥ 0 is presented in Sec. 3.4.2 below.

3.2 Model for elastic electrons.

Experimental data [18, Sec. 3.7], [19, Sec. 4.1.2.2] suggests that a sensible form for δe(E0, θ0) at normal
incidence (θ0 = 0) might be given by

δe(E0, 0) = P1,e(∞) + (P̂1,e − P1,e(∞))e−(|E0−Êe|/W )p/p . (3.6)

This function peaks at an energy E0 = Êe provided P̂1,e > P1,e(∞), which we assume to be the case. For
the energy probability function f1,e we assume a form that roughly matches the elastic component of the
spectrum dδ/dE, as it can be seen in Figs. 5 and 7, namely

f1,e = θ(E)θ(E0 − E) δe(E0, θ0)
2e−(E−E0)2/2σ2

e

√
2πσe erf(E0/

√
2σe)

(3.7)

which is normalized so that it satisfies

E0∫

0

dEf1,e(E) = δe(E0) . (3.8)

The fact that δe 6= 0 for E0 = 0 implies that expression (3.7) for f1,e diverges as E0 → 0. This divergence is
not unphysical, however, because it is integrable, viz. Eq. (3.8).

3.3 Model for the rediffused electrons.

Experimental data [18, Sec. 3.7], [19, Sec. 4.1.3] suggests that a sensible form for δr at normal incidence
(θ0 = 0) might be given by

δr(E0, 0) = P1,r(∞)
[
1− e−(E0/Er)r

]
. (3.9)

For f1,r we assume

f1,r = θ(E)θ(E0 − E)δr(E0, θ0)
(q + 1)Eq

Eq+1
0

(3.10)
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which satisfies the normalization condition

E0∫

0

dEf1,r(E) = δr(E0) . (3.11)

3.4 Model for the true secondary electrons.

3.4.1 Yield and energy distribution function.

The energy and angular dependence of δts is well fit experimentally [15, 17, 18] by an approximately universal
[25] scaling function D(x) such that

δts(E0, θ0) = δ̂(θ0)D(E0/Ê(θ0)) (3.12)

so that all dependence on the surface and incident angle is contained in δ̂ and Ê. The scaling function D(x)
is defined so that it satisfies the conditions D(1) = 1 and D′(1) = 0, which are, of course, chosen to ensure

that δts reaches a peak value δ̂ at an energy Ê. We have chosen the simplest form [10] for D(x) that satisfies
the above-mentioned conditions and that allows good fits to the data [23, 26], namely

D(x) =
sx

s− 1 + xs
(3.13)

where s is an adjustable parameter that must be > 1. In the literature one finds other parametrizations
for D(x), discussed in App. F. We have found, however, that some of these parametrizations do not fit
actual data for technical surfaces as well as (3.13). We note that this formula implies δts ∼ E1−s

0 at large
E0, showing that it satisfies the conventional range-energy relation including scattering effects [16]. Further
details are described in App. F.

As for the energy spectrum function we make the assumption

fn,ts = θ(E)FnE
pn−1 e−E/εn (3.14)

where pn and εn are phenomenological parameters (the finiteness of δ(E0, θ0), however, demands pn > 0).
Eqs. (2.18) and (A.5) yield

Fnn =
Pn,ts(E0)

(εpnn Γ(pn))nP (npn, E0/εn)
(3.15)

where P (z, x) is the normalized incomplete gamma function (see App. A). The emission probability Pn,ts is
defined below in terms of δts; a dependence on the incident angle θ0 is contained in Pn,ts.

While Eq. (3.14) does not correspond to the expression derived from the theory of metals [17], it fits the
data quite well (see Sec. 6), and allows many of the integrals to be carried out analytically, hence it is quite
appropriate for our phenomenological approach.

3.4.2 Emission probability.

Probability per incident electron. The final ingredient that must be defined in the model is the proba-
bility Pn,ts for emitting n true secondary electrons, given δts, δe and δr. Once we choose Pn,ts, the overall
probabilities are given by Eqs. (3.2–3.3–3.4), namely

P0 = P0,ts − δe − δr , (3.16a)

P1 = P1,ts + δe + δr , (3.16b)

Pn = Pn,ts , n ≥ 2 . (3.16c)

Since Pn,ts satisfies the unitarity condition

∞∑

n=0

Pn,ts = 1 , (3.17)
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so does the overall probability Pn. A simple choice for Pn,ts is a Poisson distribution,

Pn,ts =
δnts
n!
e−δts , 0 ≤ n <∞ (3.18)

which satisfies the requisite property 〈n〉 = δts. Another possible choice is a binomial distribution,

Pn,ts =

(
M
n

)
pn(1− p)M−n, 0 ≤ n ≤M (3.19)

where p = 〈n〉/M = δts/M . This distribution limits the number of emitted secondary electrons to a max-
imum M . Although this limitation is not physical, it is in general quite inocuous for sufficiently large
M , and it has the advantage that it leads to more controllable computations than the Poisson distribu-
tion. The parameter p must be constrained to be < 1 which implies, in turn, an upper limit on the
acceptable value of δts. In practice we have found that M = 10 gives sufficient accuracy for most sim-
ulations, and sets an upper limit δts = 10, which is more than adequate for all practical materials.

Probability per penetrated electron. As mentioned in Sec. 3.1, it is clear from Eq. (3.16) that P1 can
exceed unity and P0 can become negative even if δe and δr are constrained to satisfy δe+δr ≤ 1. For example,
these violations of basic probability properties can occur when δts ∼> 1.2 and δe + δr ∼> 0.5, a situation that
can readily arise in practice. An alternative definition of the emission probabilities that guarantees P0 ≥ 0
and P1 ≤ 1 follows from considering the probabilities per unit penetrated electron current rather than per
unit incident electron current. Referring to Fig. 3, it is clear that the current available for the production of
true secondary electrons is I0 − Ie − Ir. Thus the yield in terms of this penetrated current is

δ′ts =
Its

I0 − Ie − Ir
=

δts
1− δe − δr

. (3.20)

Although this definition is less practical from an experimental point of view, it allows a mathematically more
consistent definition of the probabilities Pn, as we now show. We express the SEY component δ′ts as

δ′ts =

∞∑

n=1

nP ′n,ts (3.21)

where P ′n,ts is the probability, to be specified, for generating n true secondary electrons relative to the
available penetrated current I0 − Ie − Ir. This probability must satisfy the unitarity condition

∞∑

n=0

P ′n,ts = 1 . (3.22)

A comparison of Eqs. (3.4c) and (3.21) suggests the relation

Pn,ts =
δts
δ′ts
P ′n,ts = (1− δe − δr)P ′n,ts , n ≥ 1 . (3.23)

Although this relation is not implied by the comparison, we adopt it as the definition of the probability
per incident electron Pn,ts. With this definition, Eqs. (3.2–3.3–3.4) determine the emission probabilities per
incident electron,

P0 = (1− δe − δr)P ′0,ts , (3.24a)

P1 = (1− δe − δr)P ′1,ts + δe + δr , (3.24b)

Pn = (1− δe − δr)P ′n,ts , n ≥ 2 , (3.24c)

which should be compared with Eq. (3.16). It is easy to see that, if the condition δe + δr ≤ 1 is satisfied,
the above expressions do guarantee that P1 ≤ 1 and P0 ≥ 0, the equality holding only in the extreme case
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δe + δr = 1. Note, however, that, in contrast with Eq. (3.17), the probabilities Pn,ts defined in this way
satisfy

∞∑

n=0

Pn,ts = 1− δe − δr (3.25)

which is, in general, < 1 (we have extended Eq. (3.23) to n = 0). This lack of unitarity is as it should be: the
deficit from unity in this sum represents precisely the fraction of incident electrons that yield backscattered
(elastic and rediffused) electrons, and hence is unavailable, according to our mutual-exclusion assumption,
for true secondary production.

As in the examples above, we may choose for P ′n,ts a Poisson distribution,

P ′n,ts =
δ′nts
n!
e−δ

′
ts , 0 ≤ n <∞ (3.26)

which satisfies 〈n〉 = δ′ts, as it should in order for δ′ts to have the required meaning of being the average
number of true secondary electrons emitted per penetrated electron. We can also choose the binomial
distribution,

P ′n,ts =

(
M
n

)
pn(1− p)M−n, 0 ≤ n ≤M (3.27)

where p = 〈n〉/M = δ′ts/M . Since p must be < 1, M must be chosen to be > δ′ts.

3.5 Incident-angle dependence.

In our fits to data for vacuum chamber materials (non-crystalline metal with a rough surface) we have
found that the incident-angle dependence of the total SEY is well fit by a multiplicative factor of the form
1 + a1(1− cosa2 θ0) for incident angles in the range 0 ≤ θ0 ∼< 84◦ [23, 27]. Not surprisingly, this dependence
is much milder than the inverse power of cos θ0 that is found in the literature for smooth surfaces [17, 28].
For our purposes, we have assumed the same form for all three components of the SEY. Specifically, for the
elastic and rediffused components we set

δe(E0, θ0) = δe(E0, 0)× [1 + e1(1− cose2 θ0)] (3.28a)

δr(E0, θ0) = δr(E0, 0)× [1 + r1(1− cosr2 θ0)] (3.28b)

while for the true secondary component we assume

δ̂(θ0) = δ̂ts ×
[
1 + t1(1− cost2 θ0)

]
, (3.29a)

Ê(θ0) = Êts ×
[
1 + t3(1− cost4 θ0)

]
. (3.29b)

A more complete discussion of other possible forms for the incident-angle dependence is presented in App. F.

4 The emitted-energy spectrum.

In order to extract more information from the data, we need a formula for the energy spectrum. From
Eq. (2.11) and the model for Pn described in Sec. 2.3 we obtain

dδ

dE
=

∞∑

n=1

nfn(E)

∞∫

0

n∏

k=2

{dEkfn(Ek)} θ(E0 − E −
n∑
k=2

Ek) (4.1a)

=

∞∑

n=1

nfn(E)Pn−1(E0 − E) (4.1b)

where the term P0(E0−E) appearing in the n = 1 term in (4.1b) must be interpreted not as the absorbtion
probability but rather as θ(E0 −E). Using Eq. (2.19), it is clear from Eq. (4.1a) that dδ/dE obeys the sum
rule

E0∫

0

dE
dδ

dE
=

∞∑

n=1

nPn = δ(E0) (4.2)
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as it should.
For the model described in Sec. 3 for the three components of the SEY we obtain

dδ

dE
= f1,e + f1,r +

dδts
dE

(4.3)

where
dδts
dE

=

∞∑

n=1

nPn,ts(E0) (E/εn)pn−1e−E/εn

εnΓ(pn)P (npn, E0/εn)
P ((n− 1)pn, (E0 − E)/εn) (4.4)

where we have used Eq. (A.5). Here P (z, x) is the normalized incomplete gamma function, which satisfies
P (0, x) = 1 (see App. A).

In the limit when E0 À E, εn we obtain the simplified formula

dδts
dE

=

∞∑

n=1

nPn,ts(E0)
(E/εn)pn−1e−E/εn

εnΓ(pn)
(4.5)

which shows that each component peaks at E = (pn − 1)εn. Furthermore, if all the pn’s and all the εn’s are
equal, we obtain the simple result

dδts
dE

= δts(E0)
(E/ε)p−1e−E/ε

εΓ(p)
(4.6)

where p = pn and ε = εn. This result shows that the function fn(E) can be identified with the energy
spectrum if the energy E0 is sufficently high and the fn’s are independent of n. Note that, in this case,
dδts/dE peaks at E = (p− 1)ε.

The cummulative spectrum can be similarly computed. Using Eqs. (2.10) and (2.17) we obtain

S(E0, E) =

∞∑

n=1

n

E0∫

E

dE1 fn(E1)

∞∫

0

dE2 · · · dEnfn(E2) · · · fn(En)θ(E0 −
n∑
k=1

Ek)

=

∞∑

n=1

n

E0∫

E

dE1 fn(E1)Pn−1(E0 − E1)

=

E0∫

E

dE1{f1,e(E1) + f1,r(E1)}+ Sts(E0, E) (4.7)

where the true-secondary component is given by

Sts(E0, E) =

∞∑

n=1

nPn,ts(E0)

Γ(pn)P (npn, E0/εn)

E0/εn∫

E/εn

dy ypn−1e−yP ((n− 1)pn, E0/εn − y) . (4.8)

It is easily seen that this expression yields (4.4) upon taking ∂/∂E and reversing the sign. Unfortunately, it
does not appear possible to express it in terms of conventional special functions.

5 Computational algorithm.

The model defined in Sections 2–3 is implemented, in practical simulations [10, 11], by the following algorithm:

1. When an electron strikes the vacuum chamber wall, record its incident energy E0 and the collision
point (x, y, z); compute the angle θ0 between the incident electron and the normal to the surface at
(x, y, z).

2. Compute δe(E0, θ0) according to Eqs. (3.6–3.28a), δr(E0, θ0) according to Eqs. (3.9–3.28b), and δts(E0, θ0)
according to Eqs. (3.12–3.29).
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3. Compute Pn for n = 0, 1, · · · ,M according to the model chosen 3 in Sec. 3.4.2.

4. Generate a random integer n ∈ [0,M ] with probability distribution {Pn}; this is the actual number of
secondaries generated.

5. If n = 0, delete the incident electron from computer memory.

6. If n = 1, generate the electron energy E ∈ [0, E0] with probability density f1,e(E) + f1,r(E) + f1,ts(E)
(see App. D.1).

7. If n ≥ 2, generate the energies Ek ∈ [0, E0], k = 1, · · · , n, with probability density fn,ts(E) such that∑n
k=1Ek ≤ E0 (see App. D.2).

8. Generate n independent polar angles θk ∈ [0, π/2] with probability density cosα θ, and n independent
azimuthal angles φk ∈ [0, 2π] with uniform probability density. These are the emission angles of the
secondary electrons relative to the local coordinate system that is centered at the collision point and
whose “z” axis is along the inward normal to the chamber surface.

9. From the knowledge of the vacuum chamber geometry, the location (x, y, z), and (E, θ, φ)k, compute
the momentum (px, py, pz)k for each of the n emitted electrons.

10. Continue with the next incident electron at Step 1.

6 Fits to experimental data.

For illustration purposes, we have carried out a fit to experimental data at normal incidence for stainless
steel and copper. The stainless steel data was obtained from a sample of SLAC standard 304 rolled sheet
chemically etched and passivated but not conditioned [23, 27]. For our fits we have used measured values of
δ(E0) in the range 0 ≤ E0 ≤ 1100 eV (Fig. 4), and of dδ/dE at E0 = 300 eV (Fig. 5) and 1100 eV (not
shown). The copper data was obtained at CERN from a chemically cleaned but not in-situ vacuum-baked
sample [26]. We have used for our fits data for δ(E0) in the range 0 ≤ E0 ≤ 1000 eV (Fig. 6), and for dδ/dE
at E0 = 10, 30 and 300 eV. (Fig. 7).

When fitting the elastic peak, as seen in Figs. 5 and 7, we deliberately tried to double the height of the
experimentally-measured peak. The reason is that our fitting curve for dδ/dE stops exactly at the maximum
of the peak (viz. Eq. (3.7)), hence by doubling the height we ensure that the area under the peak, which we
believe to be a better measure of δe, matches the measured value.

We have obtained the parameters pertaining to incident-angle dependence e1, e2, r1, r2 and t1, · · · , t4,
appearing in Eqs. (3.28–3.29), from other sets of data for TiN-coated aluminum and for uncoated aluminum
[23, 27]. The parameter α, which controls the angular distribution of the emitted electrons, is not determined
by the above data. However, the value α = 1 is well supported by data for the true secondary component
elsewhere [18, Sec. 7.1], hence we have adopted it. The angular distribution of the elastic and rediffused
components, however, differs substantially from a cos θ distribution [18, Sec. 7.2]. Nevertheless, we have
set α = 1 for these components as well for the sake of expediency, as we have noted that electron-cloud
simulations do not appear to be very sensitive to the exact value of α. An improved parametrization of the
angular dependence of these components is clearly necessary, and we intend to carry it out in the future [29].
Tables 1 and 2 list the values of our fitting parameters.

The value of the SEY at low incident energy deserves special attention. At primary energies below a
few eV no secondary electrons are created. In our model, only the backscattered component contributes to
δ(0), with δ(0) ∝ P̂1,e. The value P̂1,e ' 0.5 (see Table 1), which we obtained by smoothly extrapolating the
above-mentioned data down to E0 = 0 for both the copper and stainless steel samples, is also supported (for
stainless steel) by comparing recent observations for the decay time of the electron cloud in the PSR [30, 31]
with simulation results based on the SEY model described here. This parameter, which is sensitive to the
potential field at the metal surface, may be a function of the surface composition, state of conditioning, and

3In the computer calculation, we limit the number of secondary electrons generated in any given event to a maximum value
M , even for the case of the Poisson distribution; typically we set M = 10.
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δmax. Previous work [19, 32, 33] yields estimates for δ(0) ∼ 0.07 or lower for the case of smooth crystalline
surfaces.

It is interesting to note that Eq. (3.20) implies that δ′ts becomes large when δe + δr approaches unity,
hence so does 〈n〉 (unless, of course, δts is correspondingly small). Therefore, as implied by Eqs. (3.24)
combined with either (3.26) or (3.27), the distribution of the Pn’s will be bimodal, with a prominent peak
at n = 1 and a secondary peak at some larger value of n. An example of this situation is shown in Fig. 8 for
the case of stainless steel at 300 eV incident energy. Since, for the binomial distribution choice, δ′ts must be
< M , this kind of consideration must be used to determine an acceptable lower value for M . For the Poisson
distribution choice it is desireable to truncate it at n = M À δ′ts, otherwise the truncated distribution may
lead to significant numerical errors.

7 Discussion and Conclusions.

We have presented a mathematically self-consistent phenomenological probabilistic model for the secondary
emission process. The basic mathematical building block of the model is the most differential probability
Pn for the emission of n electrons when an incident electron strikes a surface at a given energy and angle.
The inputs to the model are the three components of the SEY and the secondary energy spectrum. From
these four phenomenological quantities we have constructed an event-by-event probabilistic description of
the secondary emission process suitable for multiparticle simulations of the ECE. The mathematical self-
consistency of the model ensures that these four input quantities are recovered upon performing a statistical
average over a large number of events.

The main assumptions in the model are the following: (1) The secondary electrons are generated in-
stantaneously when a primary electron hits a surface. (2) The backscattered electrons are generated only
in single-electron events (n = 1). (3) The true secondary electrons are generated in events for arbitrary
n ≥ 1 with a distribution in n whose mean is the true-secondary component of the SEY. (4) The emission
energies of the n secondary electrons generated in any given event follow an almost uncorrelated distribution
such that: (a) the energy of any given emitted electron does not exceed the incident energy E0, and (b)
the aggregate energy of the emitted electrons does not exceed E0 either. (5) The emission angles of the n
secondary electrons generated in any given event are: (a) fully uncorrelated, (b) independent of the incident
energy and angle, and (c) uncorrelated with the emission energies. The model can be easily augmented to
include angular correlations if necessary.

In order to make a distinction at the microscopic level among the three types of electrons (elastics,
rediffused and true secondaries), we have made, for simplicity, a mutual exclusion assumption, namely:
backscattered (elastics or rediffused) electrons are only emitted in n = 1 electron-wall collision events.
In other words, if two or more electrons are emitted in any given event, they are all true secondaries.
In addition, a backscattered electron is never accompanied by true secondaries in any given event. An
immediate consequence of this assumption is that δe + δr must be ≤ 1, which appears to be readily satisfied
by experimental data [20]. Another consequence is that δts must vanish in the extreme case δe + δr = 1,
which is also apparently satisfied by experiment, although there is some ambiguity in the interpretation of
the data. Should more detailed data on secondary emission invalidate the mutual-exclusion assumption,
opur model would have to be modified accordingly.

The model contains a fair number of adjustable paramaters, more than can be unambiguously determined
from the data at present. Consequently, many of the parameters cannot be uniquely pinned down, although
some are more robustly constrained by the data than others. The parameter set we have presented in Tables
1 and 2 gives a good overall representation of the data for the particular samples we have analyzed, but it
is possible that other data sets may be equally acceptable. The parameters δ̂ts, Êts, s, σe, P̂1,e, P1,e(∞),
and P1,r(∞) are robustly determined by the data. For copper, the εn’s and pn’s are reasonably well pinned
down for n∼< 4, and for stainless steel for 4∼< n∼< 8.

As mentioned in the Introduction, we had previously used, incorrectly, the formula for the jet energy
spectrum (App. B) to extract the model parameters from the data [10, Eq. 4.5]. Although the parameters
so extracted are somewhat different from those presented in Sec. 6, the overall features of the model, and
the electron-cloud simulations obtained from it, remain qualitatively unchanged.

The model allows for certain flexibility without relinquishing its self-consistency. Specifically, the model
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accepts almost arbitrary parametrizations for the three components of the SEY (elastic, rediffused and
true secondary) as functions of incident energy and angle. The energy spectrum, on the other hand, is
more restricted: while its backscattered (elastic and rediffused) components are almost arbitrary, its true
secondary component is constrained to be of the form (viz. Eq. (4.4))

∑

n

Cn(E,E0)Epn−1e−E/εn (7.1)

where E is the secondary energy. Here the parameters pn and εn are freely adjustable (as long as they
are positive) independently of the SEY. The functions Cn(E,E0), however, are determined by the true
secondary yield and by the pn’s and εn’s. The form (7.1) is determined by that of the fn’s, Eq. (3.14),
which was, in turn, chosen because the data for the spectrum looks qualitatively like Ep−1e−E/ε, and also
because it allows many of the integrals in our analysis to be carried out analytically. It is possible that other
parametrizations may give a better representation of details of present or future data. In a future publication
we intend to analyze the sensitivity of electron-cloud simulations against various parameter dependencies in
our model [29].

As more measurements of the SEY and the energy spectrum become available, we expect to steadily
improve our model, and to better pin down the parameters. As an example, we have recently found that
the fits to the copper data in Sec. 6 require a dependence of σe on the incident energy E0. The three data
sets in Fig. 7 require a monotonically increasing dependence of σe on E0 which we have parametrized in the
form

σe(E0) = σe1 − 1.88 + 2.5 tanh

(
E0 − 150

100

)
(7.2)

where all the numerical constants are in units of eV, and σe1 is specified in Table 1 as σe. Obviously this fit
is far from unique, and we do not know how it extrapolates to E0 > 300 eV. Furthermore, we do not know
the detection resolution of the apparatus used to measure the elastic peaks in Fig. 7. It is reasonable to
assume that the resolution varies with E0, so this effect would have to be unfolded from the data in order to
obtain a more faithful dependence of σe on E0. As another example of further refinements, we have noted a
dependence of s on θ0 for aluminum samples [23], of the form

s = 1.43− 0.0033θ0 (7.3)

where θ0 is in degrees. However, owing to the limited character of the fits presented here, we cannot
disentangle this dependence from others in our model, hence we have assumed, for the purposes of this
article, that s is independent of θ0, as specified in Table 1. As an example of potential future improvements,
we find it reasonable to expect that the parameter α, which controls the shape of the angular distribution of
the emitted electrons, may well depend on both n (the number of electrons emitted in the event), and on E0.
Our model can be readily augmented to accommodate any of the above-mentioned dependencies without
disturbing its self-consistency.
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A Mathematical details.

Here we provide a list of useful multidimensional integrals used in the calculations above. The basic integral

In(x, p) =
1

Γn(p)

∞∫

0

dx1 · · · dxn (x1 · · ·xn)p−1δ(x− x1 − · · · − xn)
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= θ(x)
xnp−1

Γ(np)
, p > 0 (A.1)

is easily proved by induction in n. Note that In obeys the recursion formula

In(x, p) =
1

Γ(p)

∞∫

0

dy yp−1In−1(x− y, p) (A.2)

where consistency demands the definition I0(x, p) = δ(x).
Integrating In(x, p) with respect to x yields

x∫

0

dx In(x, p) =
1

Γn(p)

∞∫

0

dx1 · · · dxn (x1 · · ·xn)p−1θ(x− x1 − · · · − xn)

= θ(x)
xnp

Γ(np+ 1)
, p > 0 . (A.3)

Another related integral is

Fn(x, p) =
1

Γn(p)

∞∫

0

dx1 · · · dxn (x1 · · ·xn)p−1e−(x1+···+xn) δ(x− x1 − · · · − xn)

= θ(x)
xnp−1e−x

Γ(np)
, p > 0 (A.4)

which is obtained in a straightforward way from (A.1). Integrating this with respect to x yields

Gn(x, p) =
1

Γn(p)

∞∫

0

dx1 · · · dxn (x1 · · ·xn)p−1e−(x1+···+xn) θ(x− x1 − · · · − xn)

= θ(x)P (np, x) , x, p > 0, (A.5)

where P (z, x) is the normalized incomplete gamma function, defined, in general, by

P (z, x) =
γ(z, x)

Γ(z)
=

1

Γ(z)

x∫

0

dt tz−1e−t (A.6)

where x ≥ 0 and Re z > 0, and where where γ(z, x) is the ordinary incomplete gamma function [34]. Note
that Gn obeys the recursion formula

Gn(x, p) =
1

Γ(p)

∞∫

0

dy yp−1e−yGn−1(x− y, p) (A.7)

where consistency demands the definition G0(x, p) = θ(x). In terms of the P -function, this recursion formula
implies

P (np, x) =
1

Γ(p)

x∫

0

dy yp−1e−yP ((n− 1)p, x− y) (A.8)

where n ≥ 1, x ≥ 0 and p > 0 (in the right-hand side of this formula we must use P (0, x) = limz→0+ P (z, x) =
1 for the case n = 1).
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B The “jet” energy spectrum.

A spectrum that has been confused [10, Eq. 4.5] with dδ/dE is the “jet energy spectrum,” defined to be the
secondary energy spectrum that would be obtained by a detector able to measure the number of emitted
electrons n and their aggregate energy E = E1 + · · · + En on an event-by-event basis. This spectrum
is analogous to the differential jet cross-sections of certain final states obtained in collisions of high energy
particles. For the secondary emission preocess, this type of measurement is in principle possible but probably
impractical as it requires event-by-event measurements.

In the context of our model, the spectrum that such a detector would measure is given by the expression

(
dδ

dE

)

jet

=

∞∑

n=1

n

∫
(dE)n(dΩ)n Pn δ(E −

n∑
k=1

Ek) (B.1)

which should be compared with Eq. (2.11). This spectrum obeys the sum rule

E0∫

0

dE

(
dδ

dE

)

jet

=

∞∑

n=1

nPn = δ , (B.2)

namely the same as dδ/dE. Assuming the model described in Sec. 3 for the three components of the SEY
and using Eq. (A.4) we obtain (

dδ

dE

)

jet

= f1,e + f1,r +

(
dδts
dE

)

jet

(B.3)

where (
dδts
dE

)

jet

=

∞∑

n=1

nPn,ts(E0)
(E/εn)npn−1e−E/εn

εnγ(npn, E0/εn)
(B.4)

and where γ(z, x) is the ordinary incomplete gamma function, defined in Eq. (A.6). This result should be
compared with Eq. (4.4) for the emitted-energy spectrum. Note that (dδts/dE)jet is broader than dδts/dE,
as each of its components peaks at E = (npn − 1)εn in the former rather than E = (pn − 1)εn in the
latter. Therefore, the measurement of (dδts/dE)jet, if it were possible, would provide knowledge about Pn,ts
for higher values of n than dδts/dE, which would add valuable information about the secondary emission
process.

C Fully uncorrelated model for Pn.
In this simplified model we assume that dPn/(dE)n is given by

dPn
(dE)n

=

n∏

k=1

fn(Ek)θ(Ek) . (C.1)

The absence of correlation among the Ek’s embodied in Eq. (C.1), as opposed to Eq. (2.17), simplifies the
calculation because it allows one to deal with the emitted electrons independently of each other. On the
other hand, the fact that the energies Ek are not subject to any constraint other than being positive implies
a nonzero probability that energy is not conserved because there is nothing to prevent the sum of the Ek’s,
or, indeed, any individual Ek, from exceeding E0. Eq. (C.1) represents an approximation relative to (2.17)
that is valid when E0 is large compared with the typical values for the emitted energies a situation that is
sometimes realized in practice.

If the function fn(E) is assumed to be of the form (3.14) we obtain

Fnn =
Pn,ts(E0)

(εpnn Γ(pn))n
(C.2)
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which is the high-E0 limit of Eq. (3.15), as it should be. To derive this result we used

∞∫

0

dEfn(E) = P 1/n
n (E0) (C.3)

which follows from Eq. (2.8). In this fully uncorrelated model the emitted-energy spectrum is given by

dδts
dE

=

∞∑

n=1

nfn,ts(E)P
1−1/n
n,ts (E0)

=

∞∑

n=1

nPn,ts(E0)
(E/εn)pn−1e−E/εn

εnΓ(pn)
. (C.4)

Similarly, the jet energy spectrum is

(
dδts
dE

)

jet

=

∞∑

n=1

nPn,ts(E0)
(E/εn)npn−1e−E/εn

εnΓ(npn)
. (C.5)

Expressions (C.4) and (C.5) are the limiting forms of (4.4) and (B.4) when E0 À E, εn, as it should be
expected according to the discussion above.

D Monte Carlo generation of secondary electrons.

D.1 The case n = 1.

The energy E of an emitted electron in an event in which only one electron is generated is determined
probabilistically according to the distribution density

dN

dE
∝ f1(E) = f1,e(E) + f1,r(E) + f1,ts(E) . (D.1)

If the standard accept-reject method is applied to the function f1(E), it is easy to encounter conditions
for which this technique is very inefficient owing to the prominent peaks of f1(E) at E ∼> 0 and E ∼< E0,
particularly when E0 > 100 eV. Since the inverse of the cummulative distribution for f1(E) cannot be found
in closed form in terms of conventional functions, it is not practical to use the inversion technique either.
However, it is easy to find the inverse of the cummulative distribution of each of the three functions f1,e(E),
f1,r(E), and f1,ts(E) separately, in which case an efficient technique (the so-called “composition rule”) does
exist [35] 4.

The problem is re-stated as follows: generate a random number E ∈ [0, E0] with distribution density

ρ(E) = aeρe(E) + arρr(E) + atsρts(E) (D.2)

where the ρ’s are probability densities with unit normalization, defined by

ρe(E) = f1,e(E)/δe(E0) (D.3a)

ρr(E) = f1,r(E)/δr(E0) (D.3b)

ρts(E) = f1,ts(E)/P1,ts(E0) (D.3c)

and the weights ai’s satisfy ai > 0 and ae + ar + ats = 1. Referring to Sec. 3, these weights are given by

ae = δe(E0)/δ1(E0) (D.4a)

ar = δr(E0)/δ1(E0) (D.4b)

ats = P1,ts(E0)/δ1(E0) (D.4c)

where δ1(E0) ≡ δe(E0) + δr(E0) + P1,ts(E0). The algorithm to generate E is, then, the following:

4We are indebted to M. Blaskiewicz for bringing this technique to our attention
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1. Generate a random number u uniformly distributed in [0, 1].

2. If 0 ≤ u < ae, generate E with probability density ρe(E), i.e., E = E0 − σe |g|, where g is a Gaussian
random number with zero mean and unit standard deviation (reject it if E < 0).

3. If ae ≤ u < ae + ar, generate E with probability density ρr(E), i.e., E = E0u
1/(1+q)
1 , where u1 is

another random number uniformly distributed in [0, 1].

4. If ae + ar ≤ u < 1, generate E with probability density ρts(E), i.e., E = ε1P
−1(p1, u2P0), where

P−1(p1, x) is the functional inverse (in x) of P (p1, x), u2 is another random number uniformly dis-
tributed in [0, 1], and P0 = P (p1, E0/ε1). Here P (p, x) is the normalized incomplete gamma function,
Eq. (A.6).

This algorithm has the added benefit that it identifies the generated electron as elastic, rediffused, or
true secondary, hence it allows the use of distinct emitted-angle distributions, in better agreement with the
phenomenology [18, Secs. 7.1–7.2].

D.2 The case n ≥ 2.

The determination of the energies E1, · · · , En of the true secondary electrons emitted in an event in which n
electrons are generated is formally equivalent to the following mathematical problem: stochastically generate
an n-dimensional vector x = (x1, x2, · · · , xn) with probability density

dN

dnx
∝ θ(x0 − x1 − · · · − xn)

n∏

k=1

xp−1
k e−xk (D.5)

subject to xk ≥ 0. In the above expression the components of x are the normalized energies, xk = Ek/εn,
the power p is what we called pn in the main body of this article, and x0 = E0/εn. These parameters must
satisfy the conditions x0 ≥ 0 and p > 0.

If it were not for the constraint x1 + · · ·+ xn ≤ x0, the problem would factorize into n elementary one-
dimensional weighted random number generations. The first step to factorize the distribution density is to
define an auxiliary vector y via xk = y2

k. In order to preserve the one-to-one correspondence between x and
y, we require that yk ≥ 0. With this change of variables, the problem reduces to the stochastic generation
of a vector y in the first “quadrant” with probability density

dN

dny
∝ θ(y0 − y)e−y

2
n∏

k=1

y2p−1
k (D.6)

where y = |y| and y0 = x
1/2
0 . The next step consists in going over to n-dimensional spherical coordinates

for y, namely
y1 = y cos θ1 ,

y2 = y sin θ1 cos θ2 ,

y3 = y sin θ1 sin θ2 cos θ3 ,

...

yn−1 = y sin θ1 sin θ2 · · · cos θn−1 ,

yn = y sin θ1 sin θ2 · · · sin θn−1 .





(D.7)

In the general case, when y is allowed to range over all space, the range for the angles is 0 ≤ θk ≤ π for
k = 1, · · · , n − 2, and 0 ≤ θk ≤ 2π for k = n − 1. In our particular case, however, the restriction yk ≥ 0
implies that the appropriate range for the angles is 0 ≤ θk ≤ π/2 for all k = 1, · · · , n− 1. Using the volume
element

dny = yn−1dy

n−1∏

k=1

(sin θk)n−k−1dθk (D.8)
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we obtain

dN ∝ θ(y0 − y)y2np−1e−y
2

dy ×
n−1∏

k=1

(sin θk)2µ−1(cos θk)2ν−1dθk (D.9)

where µ = p(n− k) and ν = p. This distribution density is of the desired fully factorized form.
The angle θk is distributed with the probability density

dN

dθk
∝ (sin θk)2µ−1(cos θk)2ν−1 , 0 ≤ θk ≤ π/2 . (D.10)

Therefore, with the change of variables t = sin2 θk, we obtain

dN

dt
∝ tµ−1(1− t)ν−1 , 0 ≤ t ≤ 1 (D.11)

whose cummulative distribution is the normalized incomplete beta function,

β̂(x, µ, ν) =
Γ(µ+ ν)

Γ(µ)Γ(ν)

x∫

0

dt tµ−1(1− t)ν−1 , (D.12)

hence the angles θk are stochastically generated by the formula

θk = arcsin

√
β̂−1(uk, µ, ν) (D.13)

where β̂−1(x, µ, ν) is the functional inverse (in x) of β̂(x, µ, ν), the uk’s are independent random numbers
uniformly distributed in [0, 1], and the arcsin function is restricted to the interval [0, π/2].

The variable y is distributed with the probability density

dN

dy
∝ θ(y0 − y)y2np−1e−y

2

. (D.14)

By making the change of variables x = y2 this yields

dN

dx
∝ θ(x0 − x)xnp−1e−x (D.15)

where x0 was previously defined. In this case the cummulative distribution is the normalized incomplete
gamma function P (np, x), Eq. A.6, with x restricted to the range 0 ≤ x ≤ x0, hence the variable y is
stochastically generated by the formula

y =
√
P−1(np, uP0) (D.16)

where P−1(np, x) is the functional inverse (in x) of P (np, x), u is a random number uniformly distributed
in [0, 1], and P0 = P (np, x0).

To summarize, the algorithm for generating the energies Ek is the following:

1. Compute x0 = E0/εn and P0 = P (np, x0).

2. Generate n− 1 independent random numbers uk, k = 1, · · · , n− 1, uniformly distributed in [0, 1], and
compute the angles θk according to Eq. (D.13).

3. Generate one more random number u uniformly distributed in [0, 1] and compute y according to
Eq. (D.16).

4. Compute the vector y according to Eq. (D.7).

5. Compute the energies using Ek = εnxk = εny
2
k for k = 1, · · · , n.
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The only potential difficulty to this algorithm is the need to evaluate the functions β̂−1(x, µ, ν) and
P−1(np, x). However, computer libraries for statistical analysis typically have them available.

It may be convenient, for checking the validity of the numerical calculation, to obtain the one-dimensional
projection of the distribution (D.5). Using the integrals in App. A we obtain

dN

dx1
=
xp−1

1 e−x1P ((n− 1)p, x0 − x1)

Γ(p)P (np, x0)
, 0 ≤ x1 ≤ x0 (D.17)

where we have chosen the normalization
x0∫

0

dx1
dN

dx1
= 1 (D.18)

(for the case n = 1 we use P (0, x) = 1).

E Monte Carlo computation of the spectra.

Besides the analytic expressions (4.4) and (B.4), the energy spectra dδts/dE and (dδts/dE)jet can be com-
puted using the Monte Carlo technique by stochastically simulating the generation of secondary electrons
and appropriately binning their energies. The main benefit of this Monte Carlo technique is to validate the
computational algorithm for the secondary emission process described in Sec. 5, which is used in our main
ECE simulation code.

The technique consists in obtaining a secondary energy histogram in E. For this purpose we fix all model
parameters and then use the algorithm in Sec. 5 for a large number N0 of incident electrons, all of which
have the same incident energy E0 and incident angle θ0. We define the histogram by dividing the energy
interval [0, E0] into a certain number B of bins of size ∆E = E0/B. Let Ni be the number of events in bin
i, where the index i = 1, 2, · · · , B labels the bin corresponding to the energy interval [(i− 1)∆E, i∆E].

To compute dδts/dE we generate secondary electrons for each incident (primary) electron according to
the algorithm in Sec. 5, except that we add the following instructions 5 immediately following step 7:

7a. For the kth secondary electron, compute the bin number i corresponding to its energy Ek.

7b. Increment Ni by 1.

For the computation of (dδts/dE)jet the appropriate steps are:

7a. Compute the total secondary energy Etot = E1 + E2 + · · ·+ En.

7b. Compute the bin number i corresponding to Etot.

7c. Increment Ni by n.

The histograms are then normalized by multiplying Ni by δ(E0)/(Ns∆E), where Ns is the total number
of secondaries generated by the N0 primary electrons, and δ(E0) is the SEY.

The Monte Carlo calculation also yields in a straightforward manner the probabilities Pn by simply
tallying the events with n emitted electrons, then dividing by the total number N0 of incident electrons.
This computation can be used as a check of the validity of the technique, since the Pn’s thus obtained must
agree, within statistical errors, with the input values given by Eqs. (3.16) or (3.24), depending on the model
chosen.

The above procedures (except for the trivial normalization of the histograms) are implemented by the
following section of FORTRAN code:

do 1 np=1,nprim

call secelec(E0,theta0,nsec,energ,ang)

iPn_hist(nsec)=iPn_hist(nsec)+1

5For the purposes of obtaining the energy spectra, steps 8 and 9 are skipped.
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if(nsec==0) go to 1

nstot=nstot+nsec

Etot=0

do ns=1,nsec

En=energ(ns)

Etot=Etot+En

ien=En/desec+1

idde_hist(ien)=idde_hist(ien)+1

end do

ien=Etot/desec+1

iddejet_hist(ien)=iddejet_hist(ien)+nsec

1 continue

where iPn hist, idde hist and iddejet hist are the histograms for Pn, dδ/dE, and (dδ/dE)jet, respec-
tively, nprim is the number N0 of primary electrons, desec is the energy interval size ∆E, nstot is a counter
that tallies the total number Ns of secondary electrons, and the rest of the variables are fairly obvious.
The main ingredient, of course, is the event generator subroutine secelec(E0,theta0,nsec,energ,ang)

that creates secondary electrons for a given incident electron. This subroutine embodies steps 1–7 of the
algorithm described in Sec. 5. It takes as inputs the incident electron energy E0 (variable E0) and the
incident angle θ0 (variable theta0), in addition to all the parameters listed in Table 1. The outputs are: the
number of secondary electrons generated n (variable nsec), their energies E1, E2, · · ·, En contained in the
one-dimensional array energ, and their polar and azimuthal angles contained in the two-dimensional array
ang.

Figure 9 shows the two kinds of spectra, computed both by the analytic and Monte Carlo techniques,
for a sample case in which δe = δr = 0 and δ = δts = 1.877. Figure 10 shows the result of the calculation of
the emission probabilities Pn for the same conditions for the energy spectrum. The agreement between the
analytic and the Monte Carlo methods supports the validity of the subroutine secelec.

F Alternative fits for the true secondary yield.

Eq. (3.13) is qualitatively similar to a more conventional form for the universal scaling function, namely [15]

D(x) = ax1−s
(

1− e−bxs
)

(F.1)

where a, b and s are constrained by the conditions D(1) = 1 and D′(1) = 0, i.e.

a =
1

1− e−b , s =
1− e−b

1− (1 + b)e−b
, (F.2)

which leaves only one independent parameter. Eq. (F.1) is obtained from the semi-empirical theory of
secondary emission [18, Ch. 6], [25, 36]. In this framework the true-secondary yield is

δts ∝
R∫

0

dz f(z)

(
−dE
dz

)
(F.3)

where dE/dz is the energy loss rate of the primary electron in the material, f(z) is the probability that
a secondary electron created at depth z will make it to the surface, and R is the range of the primary
electron. The effects from scattering of the primary electron in the material are taken into account [15] by
replacing dE/dz by its effective value, namely −E0/R, where E0 is the incident electron energy. Assuming
f(z) = exp(−z/λ), where λ is the absorption length of a secondary electron in the material, Eq. (F.3) yields

δts ∝
E0

R

(
1− e−R/λ

)
. (F.4)
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Furthermore, assuming the validity of the energy-range relation R ∝ Es0 , yields (F.1) upon trading off all

proportionality constants for Ê and δ̂, and imposing the conditions D(1) = 1 and D′(1) = 0. The parameter
s may be obtained from measurements of the range-energy relation for Al2O3, yielding s = 1.35 [16], whence
a = 1.11 and b = 2.31. Another example of an alternative form for D(x) that differs from (F.1) but satisfies,
nevertheless, the range-energy relation, is found in Ref. [28]. Fig. 11 shows Eqs. (3.13) and (F.1) plotted for
s = 1.35.

It is straightforward to verify that our Eq. (3.13) can be obtained in the same way by simply assuming
f(z) = (1 + z/2λ)−2 instead of exp(−z/λ). Note that both (3.13) and (F.1) have the same power-law
behaviors at small and large E0, namely

D(x) ∝
{
x as x→ 0

x1−s as x→∞ (F.5)

on account of the validity of the energy-range relation. Since (3.13) provides a better fit to the SEY data
than (F.1) for the samples we have analyzed, it would appear that the secondary electron escape probability
function (1 + z/2λ)−2 describes the escape process better than exp(−z/λ). However, due to the limited
energy range of our fits, and the number of other fitting parameters, we cannot draw this conclusion with
certainty. Nevertheless, such a possibility might be worthy of further investigation.

For materials with smooth surfaces, the incident-angle dependence of δ̂ and Ê are often parametrized as

δ̂(θ0) =
δ̂(0)

(cos θ0)α1
, Ê(θ0) =

Ê(0)

(cos θ0)α2
(F.6)

with α1 and α2 are O(1) [17, 28]. The samples we have analyzed [23, 37], however, correspond to amor-
phous materials with rough surfaces and we have found that the above power laws give a much too strong
dependence on θ0. As described in Secs. 3.2, 3.3 and 3.4, we have found that polynomial fits of the form
1 + a1(1 − cosa2θ0) represent the data quite well for the range 0 ≤ θ0 ∼< 84◦, particulalry for δ̂(θ0)/δ̂(0).
However, a good alternative fit for this ratio, which is more conventional than the polynomial fit, is given
by [18, Sec. 7.3]

δ̂(θ0) = δ̂(0) exp[γ(1− cos θ0)] . (F.7)

Actual fits to the data yield values for γ in the range ∼ 0.2− 0.7 depending on the type of material, its state
of conditioning, and the incident energy E0 [23]. For the values in Table 1, with (a1, a2) representing any of
the pairs (e1, e2), (r1, r2), (t1, t2) or (t3, t4), the following substitutions work adequately:

(a1, a2) = (0.26, 2.0) → γ = 0.33 , (F.8a)

(a1, a2) = (0.66, 0.8) → γ = 0.49 , (F.8b)

(a1, a2) = (0.70, 1.0) → γ = 0.56 . (F.8c)

References

[1] M. A. Furman and M. T. F. Pivi, “Probabilisitic Model for the Simulation of Secondary Electron
Emission,” PRST-AB v5/i12/e124404.

[2] M. Izawa, Y. Sato and T. Toyomasu, “The Vertical Instability in a Positron Bunched Beam,” Phys.
Rev. Lett. 74(25) (1995), pp. 5044–5047.

[3] K. Ohmi, “Beam Photo-Electron Interactions in Positron Storage Rings,” Phys. Rev. Lett. 75(8), pp.
1526–1529 (1995).
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Table 1: Main parameters of the model.

Copper Stainless Steel POSINST name

Emission angular spectrum (Sec. 2.3.1)
α 1 1 pangsec

Elastic electrons (Sec. 3.2)
P1,e(∞) 0.02 0.07 P1einf

P̂1,e 0.496 0.5 P1epk

Êe [eV] 0 0 E0epk

W [eV] 60.86 100 E0w

p 1 0.9 powe

σe [eV] 2 1.9 sige

e1 0.26 0.26 epar1

e2 2 2 epar2

Rediffused electrons (Sec. 3.3)
P1,r(∞) 0.2 0.74 P1rinf

Er [eV] 0.041 40 Ecr

r 0.104 1 qr

q 0.5 0.4 pr

r1 0.26 0.26 rpar1

r2 2 2 rpar2

True secondary electrons (Sec. 3.4)

δ̂ts 1.8848 1.22 dtspk

Êts [eV] 276.8 310 E0tspk

s 1.54 1.813 powts

t1 0.66 0.66 tpar1

t2 0.8 0.8 tpar2

t3 0.7 0.7 tpar3

t4 1 1 tpar4

Total SEY †

Êt [eV] 271 292 E0pk

δ̂t 2.1 2.05 dtotpk

† Note that Êt ' Êts and δ̂t ' δ̂ts + P1,e(∞) + P1,r(∞) provided that Êts À Êe, Er.

Table 2: Additional model parameters for the true secondary component.

Copper POSINST name

pn 2.5, 3.3, 2.5, 2.5, 2.8, 1.3, 1.5, 1.5, 1.5, 1.5 pnpar(n)

εn [eV] 1.5, 1.75, 1, 3.75, 8.5, 11.5, 2.5, 3, 2.5, 3 enpar(n)

Stainless Steel POSINST name

pn 1.6, 2, 1.8, 4.7, 1.8, 2.4, 1.8, 1.8, 2.3, 1.8 pnpar(n)

εn [eV] 3.9, 6.2, 13, 8.8, 6.25, 2.25, 9.2, 5.3, 17.8, 10 enpar(n)
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Figure 4: The SEY for stainless steel for SLAC standard 304 rolled sheet, chemically etched and passivated
but not conditioned. The parameters of the fit are listed in Table 1. Data courtesy R. Kirby.
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Figure 5: The emitted-energy spectrum for stainless steel at 300 eV incident energy and normal incidence,
for SLAC standard 304 rolled sheet, chemically etched and passivated but not conditioned. Data courtesy
R. Kirby.
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Figure 6: The SEY for copper. The parameters of the fit are listed in Table 1. Data courtesy N. Hilleret for
chemically cleaned but not in-situ vacuum-baked samples.
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Figure 7: The emitted-energy spectrum for copper at 295, 30 and 10 eV incident energy and normal incidence
on chemically cleaned but not in-situ vacuum baked samples. Data courtesy N. Hilleret.
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Figure 8: The probability for emitting n secondary electrons when a 300-eV electron strikes a surface at
normal incidence, computed according to Eqs. (3.24-3.27) using the fit parameters listed in Table 1 assuming
a binomial form (Eq. (3.27)) for P ′n,ts with M = 10. The large relative value of P1 for stainless steel is due
to the large value of δe + δr.
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Figure 9: The two kinds of secondary energy spectra for normal-incident electrons of energy E0 = 300 eV for
the parameter choices pn = 3, εn = 20 eV, δe = δr = 0 and δts = δ = 1.877 assuming a Poisson distribution
for Pn,ts truncated at n = 10. The two curves vanish identically beyond E0, and are normalized so that the
area under either of them in 0 ≤ E ≤ E0 equals δ. The analytic curves are given by Eqs. (4.4) and (B.4),
respectively. For the Monte Carlo method we used N0 = 106 incident electrons and we divided the energy
interval [0, E0] into 103 bins of width ∆E = 0.3 eV. The values chosen for εn and pn are not meant to be
realistic; we use them here for illustration purposes only. Note that dδ/dE peaks at E ' (p− 1)ε = 40 eV in
agreement with the discussion in Sec. 4, while (dδ/dE)jet is much broader, as each of its components peaks
at E = (np− 1)ε, as discussed in App. B.
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Figure 10: The probability for emitting n electrons, Pn, for the same conditions as in Fig. 9. The “Poisson”
curve is Eq. (3.18), extended analytically to continuous values of n. The analytic results were obtained by
numerically integrating dδts/dE, given by Eq. (4.4), over E in the range 0 ≤ E ≤ E0 separately for each
value of n. The Monte Carlo results were obtained concurrently with the energy spectra shown in Fig. 9,
according to the computer algorithm described in App. E.
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Figure 11: The true secondary emission yield scaling functions, Eqs. (3.13) and (F.1), for s = 1.35.
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